SPTIMITIVE

EFFICIENCY THINKING

Al-based OPTIMIZATION SOLUTIONS

For Industrial Digital Transformation

REAL-TIME OPTIMIZATION 4.0 OF CEMENT FACTORIES
Throughput, Energy & Quality

7/July/2020, Javier A. Garcia - CEO & Founder

© OPTIMITIVE S.L.U. 2020



OPTIMITIVE

» Founded in 2008 in the Technology Park of Alava, Spain.
= 22 employees.

= Incubated and backed by TECNALIA - 5th largest

European Research Institution with over 1400 Professionals.

= Sfrong collaborative R&D track in successful EC funded

projects.
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OPTIMITIVE has achieved Al-optimized
decision making in Industrial Operations

OPTIBAT is our product, operational since 2011
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Challenge in process industries
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Solution: Al In closed-loop
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OVERVIEW OF MPC AND RTO SOFTWARE LANDSCAPE
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Process Automation Panorama

Operation layer } RTO Abnormal
(Normal conditions) conditions

Advanced control layer }

PLC, PID, basic control loops

RTO (Real-Time Optimization) is applied since the late 80's

It seats on top of the Multivariable Process Control (MPC or MVC) or directly over the DCS. It proposes setpoints for
controllable variables that must be reached by the underlaying controls.

Those setpoints make optimal some KPI (throughput, quality, energy cost), while preserving plant constraints.
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RTO Vs MVC

°* ARTO provides setpoints that optimize target KPI's while ensuring constraints satisfaction. It works on top and
supported on existing controls (basic control or advanced control).

°*  MVC (Multivariable Control) or MPC (Model-Based Predictive Control) is in charge of making controllable variables
reach their setpoints accurately, in minimum time and with minimum standard deviation.

Key Performance

Indicator BASIC CONTROL PREDICTIVE CONTROL RTO
MPC, MVC
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RTO approaches and examples

Their level of presence depends mostly on the industry. Only in large Chemical industries, O&G and partially in
Cement industry they have a relevant adoption level.

They depend largely on costly fine-tuning works.

L@ V@l RTO based on a Matrix-based linear MPC ASp.e ".feCh LA, Honeyygell et
Model control model Optimizer, Rockwell Pavilion8, ABB
Expert Optimizer, Shell SMOC

Rigorous RTO based on Rigorous Physical/Chemical

Models Models of the process A e e el e AT

} Schneider Romeo, Soteica
Online

FLSMIDTH’s Process Expert (PXP)

Fuzzy Rules Pseudo-RTO based on Fuzzy Control rules } . .
- only in cement industry -

RTO based on non-linear Models Learned from

Process Data and automatically updated SELLULUS 7 A TS
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Matrix-based linear MVC control RTOs

RTO based on a Matrix-based linear MVC
conirol model

It makes use of the MPC model to optimize economic KPIs.

 They are based on Linear relations (gains) among
Controlled Variables (CV) and Manipulated Variables (MV)
- rough approximation to complex dynamics.

n i

Linear Opfimization  They depend on the costly execution of Step-tests

* A Linear Programming (LP) algorithm is normally used to
find optimal settings. This limits the chances of finding the
real optima.
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Rigorous Model based RTOs

RTO based on Rigorous
Physical/Chemical Models of the process

D

Once fine-tuned, models achieved can be accurate while
the equipment is not modified.

® DPF Model:
by oo wy o

nnnnnn

* They require the definition of equations of the physics
and chemical reactions of the process. This can never
represent the complexity of real equipment status.

 They demand a costly work of modelling, of ca. 1to 1.5
years. Implementation cost is very high.

* Models are static and difficult to maintain. Any change
will mean that models are not valid anymore.

Copyright © 2020 OPTIMITIVE — All Rights Reserved. ~PTIMITIVE



Fuzzy rule based RTOs

Not really an RTO. Pseudo-optimization
based on heuristic human-created rules

D

This kind of Expert System gives process engineers the
feeling of controlling exactly what the optimizer will do in
each situation.

» They require the definition of many fuzzy control rules to
specify how to act in every process condition.

* Models are not accurate; they define rough tranches of
behavior

« Models are difficult o maintain
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Al-based non-linear RTOs

RTO based on Al-based non-linear models
. 4

This is the most advanced and innovative approach. It makes
use of Machine Learning (ML) Algorithms to achieve highly
accurate non-linear models to optimize economic KPIs.

« They are based on highly non-Linear relations.

« Al-models are fast to setup and only depend on the
availability of process data

Non-linear Al models . . )
* Models remain continuously updated thanks to Machine

Learning.
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Traditional Vs Al-based Optimization

Linear Constraints

A Setpoint2 Y &

/ :
\ Setpointl

Traditional Optimization
with Linear Model and Linear
Constraints

4 Setpoint2 Non-Linear
Constraints

Setpoint1

Al-based Optimization
for the same problem, with non-Linear
Model and non-Linear Constraints
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CASE STUDY 1
ROTARY KILN - CLINKER FURNACE OPTIMIZATION
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Kiln Opfimisation at a glance
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Overall Strategy - Kiln optimization

Freelime
Ve |
Torque |
Coal flow
to Calciner NoX

Operative Variables

________ =N\

Constraints
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RTO Setup

EEEEEEEEEEEEEEEEEEESR Receives As-Is
The Process: process data

Vertical Raw Mill

Constantly
monitors,
learns,
analyses,
improves
Standards:
TCP/IP, OPC, — —
SQL, OCR, XML, Merigar  —° T o T
ODBC, ... —

=

<IIIIIIIIIIIIIIIIII' Sends back
improved set-point
data
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Working Strategy in Real Time
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CASE T: KILN + COOLER OPTIMIZATION

Location » USA

N° of assets » 1 KILN

Capacity » 400 tph

Objectives » Throughput + Quality
+ Energy

Operative variables — Calciner

Conftrolled by OPTIBAT temperature,
Preheater O2, Kiln
fuel, Dust %, Kiln
feed, Kiln hood draft,
cooler fans,
undergrate pressure.
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KILN: Project Objective and main KPIs

Throughput
(main)

Optimization target

Increase average kiln throughput (keep it in
allowed maximum as much as possible)

Maintain or increase quality (FreeCaO)
Maintain or decrease the fuel consumption

Other Constrains

KILN stability

KILN equipment's limits

Easy fo use

Minimum attention needed from operator
Operate kiln and cooler independently

Energy Quality
(secondary) (main)
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KILN: Optimization process

, Quality
Operation Throughput
conditions :
8 Fuel consumption

(kiln + calciner)

Variables
controlled by the » 0 PTI BAT

Kiln hood draft
Undergrate pressure

plant
RTO  Kiln Feed
% » Kiln Fuel
Operative limits « Calciner temperature
* Preheater O2
*  Dust
Desired Quality ' «  Coolerfans

Plant priorities (throughput,
energy, stability...)
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KILN: Project results in closed-loop

Quality » FreeCaO withing desired ranges 97%
of the time.
Throughput » Kiln in maximum allowed (by plant)

throughput 99% of the time.

Specific energy consumption — 4% reduction*®

Process Constrains » Main constrains fulfilled

(*) Provisional results by June/2020

~PTIMITIVE




CASE STUDY 2
HORIZONTAL FINISHING MILL OPTIMIZATION
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Horizontal Finishing Mill Optimization
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CASE 2: HORIZONTAL FINISHING MILL

Location » USA

N° of assets » 3FM

Capacity (per asset) — 100-140 tph

Objective » Throughput + Quality +
Energy

Operative variables — Feed, Separator speed,
Conftrolled by OPTIBAT Mill pressure, Separator
pressure
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FINISHING MILL: Objective and main KPIs

Throughput
(main)

Energy
(secondary)

Quality
(main)

Optimization target

Increase average mill throughput
Maintain or increase quality (blaine + passing)

Maintain or decrease the specific energy
consumption

Other Constrains

Mill stability

Mill equipment's limits

Capable of working with different cement
types

Easy to use

Minimum attention needed from operator
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FINISHING MILL: Optimization process

, Quality
Operation Throughput
conditions o

” Specific power
consumption

conaeatrme mp [ GPTIBAT ]
RTO S Feed

« Separator speed
« Separator exit

Sesied Quai pressure
Ssired Uity ' +  Mill exit pressure

Plant priorities (throughput,
energy, stability...)

Operative limits
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FINISHING MILL: Project results in closed-loop

v

Quality 10-50% increase in Passing and Blaine*

Throughput Increase in 5-9% (dep. on product)

v

Specific energy consumption—— Decrease up to 5% (dep. on product)

Process Constrains » Main constrains fulfilled

*First 3 months of 2019 vs First 3 months months of 2020
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CASE STUDY 3
VERTICAL RAW MILL OPTIMIZATION
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Vertical Raw Mill Optimization
Production Grinding layer
&
- V¥

limits l Product (Fine particles)& ’
Coarse particles

Exhaust fan ) Ground product
Rotor > [ Humidity ]

Fine particles

Material
Roller

Separator ) D [ ]
Fineness

Screw feeder Table

Rotating table [ 2 Atmosphere

Eay > Energy
consumption
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CASE 3: VERTICAL RAW MILL

CEMENTOS MOLINS in Sant Viceng dels Horts, near Barcelona.
Vertical Raw Mill, brand FLSmidth.

Production capacity of 340 tons/hour.
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VERTICAL RAW MILL: open loop operation
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Average productivity
also increased thanks
to OPTIBAT.

Carancroe w

A Quality parameters g o P — R
s 8 have improved, and
are always kept inside

acceptable ranges.

= . Operators follow closely the
A minimum of energy cost in recommendations (yellow
KWh/tis achieved. lines). In “ Automatic Pilot",
Y, OPTIBAT carries out directly
the recommendations.
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VERTICAL RAW MILL: Solution installed

OPTIBAT is connected to the existing control Constraints that determine the stability of
system, learning from data, reporting actual the process are strictly respected:
savings and recommending in real fime the -Vibrations of the cement mill
optfimum set-points values for 3 main -Thickness of grinding layer
operating variables, carefully chosen with the -Fineness of Raw Meal
customer’s process engineers: -Operating limits of the mill

1. Power of air exhauster fan components

2. Inside differential pressure —-Production rates

3. Pressure of grinding rollers -Qutlet temperature
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VERTICAL RAW MILL: 1-year results

Results obtained quarterly in one year of service at a typical
cement mill have shown sustained improvement of:

Energy Consumption » 5% to 10% energy savings

Throughput (feeding) » 2% to 9% increased productivity

Quality (fineness) » 3% to 6% better quality
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DEMO
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THANK YOU!

More information:
market@optimitive.com
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