

AI-based OPTIMIZATION SOLUTIONS

For Industrial Digital Transformation

REAL-TIME OPTIMIZATION 4.0 OF CEMENT FACTORIES Throughput, Energy & Quality

7/July/2020, Javier A. García – CEO & Founder

OPTIMITIVE

- Founded in 2008 in the Technology Park of Álava, Spain.
- 22 employees.
- Incubated and backed by TECNALIA 5th largest European Research Institution with over 1400 Professionals.
- Strong collaborative R&D track in successful EC funded projects.

OPTIMITIVE has achieved Al-optimized decision making in **Industrial Operations**

OPTIBAT is our product, operational since 2011

MAIN MARKETS

Power generation

Cement production

Oil and gas

Chemical

Paper production

SPTIBAT

MARKET DRIVERS

 Digital Transformation

Industry 4.0

Challenge in process industries

Solution: Al in closed-loop

OVERVIEW OF MPC AND RTO SOFTWARE LANDSCAPE

Process Automation Panorama

- RTO (Real-Time Optimization) is applied since the late 80's
- It seats on top of the Multivariable Process Control (MPC or MVC) or directly over the DCS. It proposes setpoints for controllable variables that must be reached by the underlaying controls.
- Those setpoints make optimal some KPI (throughput, quality, energy cost), while preserving plant constraints.

RTO Vs MVC

- A RTO provides setpoints that optimize target KPI's while ensuring constraints satisfaction. It works on top and supported on existing controls (basic control or advanced control).
- MVC (Multivariable Control) or MPC (Model-Based Predictive Control) is in charge of making controllable variables reach their setpoints accurately, in minimum time and with minimum standard deviation.

RTO approaches and examples

- Their level of presence depends mostly on the industry. Only in large Chemical industries, O&G and partially in Cement industry they have a relevant adoption level.
- They depend largely on costly fine-tuning works.

Linear Matrix Model	RTO based on a Matrix-based linear MPC control model	Aspentech DMC, Honeywell Profit Optimizer, Rockwell Pavilion8, ABB Expert Optimizer, Shell SMOC
Rigorous Models	RTO based on Rigorous Physical/Chemical Models of the process	Schneider Romeo, Soteica (Yokogawa) Visual Mesa, Aspen OnLine
Fuzzy Rules	Pseudo-RTO based on Fuzzy Control rules	FLSMIDTH's Process Expert (PXP) - only in cement industry -
Al-based Models	RTO based on non-linear Models Learned from Process Data and automatically updated	OPTIBAT RTO by OPTIMITIVE

Matrix-based linear MVC control RTOs

Linear Matrix Model

RTO based on a Matrix-based linear MVC control model

It makes use of the MPC model to optimize economic KPIs.

- They are based on Linear relations (gains) among Controlled Variables (CV) and Manipulated Variables (MV)
 rough approximation to complex dynamics.
- They depend on the costly execution of Step-tests
- A Linear Programming (LP) algorithm is normally used to find optimal settings. This limits the chances of finding the real optima.

Rigorous Model based RTOs

Rigorous Models

• DPF Model: $\frac{h_{L_{1}}}{h_{2}} = \frac{h_{L_{2}}}{h_{2}} \cdot \frac{h_{L$

RTO based on Rigorous Physical/Chemical Models of the process

Once fine-tuned, models achieved can be accurate while the equipment is not modified.

- They require the definition of equations of the physics and chemical reactions of the process. This can never represent the complexity of real equipment status.
- They demand a costly work of modelling, of ca. 1 to 1.5 years. Implementation cost is very high.
- Models are static and difficult to maintain. Any change will mean that models are not valid anymore.

Fuzzy rule based RTOs

Fuzzy Rules

Not really an RTO. Pseudo-optimization based on heuristic human-created rules

This kind of Expert System gives process engineers the feeling of controlling exactly what the optimizer will do in each situation.

- They require the definition of many fuzzy control rules to specify how to act in every process condition.
- Models are not accurate; they define rough tranches of behavior
- Models are difficult to maintain

Al-based non-linear RTOs

Al-based Models

RTO based on AI-based non-linear models

Non-linear AI models

This is the most advanced and innovative approach. It makes use of Machine Learning (ML) Algorithms to achieve highly accurate non-linear models to optimize economic KPIs.

- They are based on highly non-Linear relations.
- Al-models are fast to setup and only depend on the availability of process data
- Models remain continuously updated thanks to Machine Learning.

Traditional Vs Al-based Optimization

with Linear Model and Linear Constraints

Al-based Optimization

for the same problem, with non-Linear Model and non-Linear Constraints

CASE STUDY 1 ROTARY KILN - CLINKER FURNACE OPTIMIZATION

Kiln Optimisation at a glance

Overall Strategy - Kiln optimization

RTO Setup

Working Strategy in Real Time

CASE 1: KILN + COOLER OPTIMIZATION

Operative variables — Calciner Controlled by OPTIBAT tempera

Hildogripor F Qodiny
 + Energy
 Calciner
 temperature,
 Preheater O2, Kiln
 fuel, Dust %, Kiln
 feed, Kiln hood draft,
 cooler fans,
 undergrate pressure.

KILN: Project Objective and main KPIs

KILN: Optimization process

KILN: Project results in closed-loop

Process Constrains — Main constrains fulfilled

(*) Provisional results by June/2020

CASE STUDY 2 HORIZONTAL FINISHING MILL OPTIMIZATION

Horizontal Finishing Mill Optimization

CASE 2: HORIZONTAL FINISHING MILL

 N° of assets \longrightarrow 3 FM Capacity (per asset) \rightarrow 100-140 tph

Energy

Operative variables \longrightarrow Feed, Separator speed, Controlled by OPTIBAT Mill pressure, Separator pressure

FINISHING MILL: Objective and main KPIs

FINISHING MILL: Project results in closed-loop

Quality \longrightarrow 10-50% increase in Passing and Blaine* Throughput \longrightarrow Increase in 5-9% (dep. on product) Specific energy consumption \longrightarrow Decrease up to 5% (dep. on product)

Process Constrains — Main constrains fulfilled

*First 3 months of 2019 vs First 3 months months of 2020

CASE STUDY 3 VERTICAL RAW MILL OPTIMIZATION

Vertical Raw Mill Optimization

CASE 3: VERTICAL RAW MILL

CEMENTOS MOLINS in Sant Vicenç dels Horts, near Barcelona.

- Vertical Raw Mill, brand FLSmidth.
- Production capacity of 340 tons/hour.

VERTICAL RAW MILL: open loop operation

And in case of the same in case AL CONTRATE www.poprimitive.com Contraction O Process Nap O Planagement O Anticip PTIBAT - Gerent Persistent units in proceeding actual Medical discussion and realized Patalog and and action productly Poncine salvada aspectice agus Plaik-.94.7 2 11.0 Content Potencia ventilador Tira Halino SP 2,00 2109.8 616 Personal Revented media realize V mbir Presion entrada racino cruto SP nber Presime realization equilibrication re-182.9 hor Temperatara salida malieo de crud... 10 28 14 340 380 7 New Advanced Form Other three Vers Diedekers Circle. \$1.8C 88.85 38.58 ALC: NO 12.08 20.00 38.00 08.00 15.05 12:05 00.00 18.00 15.00 12.00 Alimentacion total moline 136.9 338.5 to. enand'ertariat 18 6 Company of or Forefacts Falerana motor meas solativa in a de sense a de Instantially - kesse - Loss ConsumaTotal \$170.4 5421.8 30 ---- Quest. Over two viento Act Separada 10.0 81.1 W tence motor mess rotaten 100.0 1124.4 RW 10.0 Véracienca 14 mm/s hans/Mara 400.9 • Euros/Ton 1.5 10.00 arforespee years Ginet Type products 2100 Conto Unitario Clectrico Offici. 164 0800 12:00 10-00 08-08 10.00 12:00 10:00 12.46 10.00 Howard and country Humen ad anabecental Presion ambientei Inspectors autoritat inine. weiten Alexenial andia ander S Average productivity 41 also increased thanks to OPTIBAT. Consiston Statistic Quality parameters tan karole bare 1 04.04 have improved, and 2015-07-21 13:14:49 are always kept inside acceptable ranges. Operators follow closely the A minimum of energy cost in recommendations (yellow KWh/t is achieved. lines). In "Automatic Pilot", OPTIBAT carries out directly the recommendations.

VERTICAL RAW MILL: Solution installed

OPTIBAT is connected to the existing control system, learning from data, reporting actual savings and recommending in real time the optimum set-points values for 3 main operating variables, carefully chosen with the customer's process engineers:

- 1. Power of air exhauster fan
- 2. Inside differential pressure
- 3. Pressure of grinding rollers

Constraints that determine the stability of the process are strictly respected:

- -Vibrations of the cement mill
- -Thickness of grinding layer
- -Fineness of Raw Meal
- -Operating limits of the mill
- components
- -Production rates
- -Outlet temperature

VERTICAL RAW MILL: 1-year results

Results obtained quarterly in one year of service at a typical cement mill have shown sustained improvement of:

Energy Consumption — **5% to 10% energy savings**

Throughput (feeding) — **2% to 9% increased productivity**

SPTIMITIVE EFFICIENCY THINKING

THANK YOU!

More information: market@optimitive.com

www.optimitive.com