

South Korea Pyro Process

CASE STUDY

Case 1: Kiln Optimization

Location	South Korea				
N° of assets	1 Kiln				
Type of kiln	Dry process with precalciner				
Production	1.8 M. Tons Clinker				
Fuels	 Coal AF: Waste oil, solid mix (plastics, tires, wood) and sludge 				
Substitution rate	55% (in weight)				
Control System	OPC-DA Server/DCS&SCDA				

Alternative fuels

Fuel	Injection point	NCV (kcal/kg)	Flow rate (t/h)	Price	Comments	
Coal	MB	6210	21	+		
	Calciner					
Waste oil	MB	4060	5	+	 Viscosity fluctuation. Associated with clogging in tertiary air duct. 	
	Calciner					
Plastic.	Calciner	3.800	7.5	-	 Mix composition constant. Frequent blockages in dosage pipe. 	
Tires chips.	Calciner	6.350	1.5	+		
Wood chips	Calciner	3.000	1.5	-		
Industrial sludge	Backend	0	2	-	 0 NCV. High content of water. Cooling down the process. 	
Sewage sludge	Calciner	0	9	-		

Project Objective and Challenges

• **Project objective:** Minimize Specific Energy Cost by optimizing fuel mix and fulfilling with Quality and Environment standards.

• Project challenges:

- Mix of operational, quality and environmental constraints:
 - Operational: Kiln power consumption, Tertiary Air Temperature and CO at preheater exit.
 - Quality: Free lime and Chlorine at clinker.
 - Environmental: NOx emission.
- There are some operational set points (Kiln Feed, ID Fan, Cooler Operation) that are out of the optimization strategy due to customer requirement.
- No consistent supply of Alternative Fuels.
- Non consistent flow of AF.
- Not fully automize Plant:
 - Clinker testing frequency 4 hours (2 hours if Free Lime above 2.5%).
 - No availability of kiln inlet gas analyzer.
- Unstable process key parameters: precalciner output temperature and torque.

Kiln Optimization

Solution - KILN

Kiln Optimization-Balance between variables

There are operative variables that impact in more than one constraint and influence as well in the Specific Energy Cost.

OPTIBAT[®] calculates and recommends the optimum values for those operative variables with the following priorities:

- 1. Constraint's fulfilment.
- 2. Minimize Specific Energy Cost.

	Free Lime	NOx	Tertiary Air Temperatur e	Torque	Chlorine	со	SEC
MB Coal	\downarrow		Î	1	\downarrow		$\uparrow \uparrow$
MB Waste oil	\downarrow		Î	Î	\downarrow		ſ
Drive Speed				Î			
Industrial Sludge	1		ſ	\downarrow	\downarrow		\downarrow
Precalciner Temperature	\downarrow		1	Î	\downarrow		
Precalciner Waste Oil	\downarrow	ſ		Î		Î	Î
Solid Mix		1		Î	1	Î	$\downarrow \downarrow$
Sewage Sludge		Î					$\downarrow \downarrow$

Kiln Optimization-Balance between variables

Example: Relation between CO, Solid Mix and Waste Oil

Example: Relation between Industrial Sludge, Calciner Waste Oil and Specific Energy Cost

Results

Results obtained in Business Case performed by client (21 days):

- Average Specific Energy Cost: -2.15%
 - Coal -3%.
 - Solid Mix -0.5%
 - Waste oil +7.12%
 - Industrial sludge +3.21%
 - Sewage sludge +2.67%
- Specific Energy Cost with all constraints within limits: -13.71%.
- Constrains Improved: 84.21% of the time

Conclusions

- OPTIBAT[®] can meet quality and environmental requirements, despite the existing level of automation (clinker frequency testing and not availability of backend analyzer).
- OPTIBAT[®] brings Constraints within their limits (84.21%) and improves process stability. On top of this, the Specific Energy Cost is consistently improved by 2.15%.
- An improvement of 13% can be achieved with stable conditions of the kiln.
- OPTIBAT[®] optimizes fuel mix (coal and six AF) base on process conditions, emissions, quality and price, in order to reduce specific energy cost.

SPTIMITIVE EFFICIENCY THINKING

THANK YOU!

info@optimitive.com www.optimitive.com