

Tecnologías AL en la industria de los cementos

Aplicaciones de O₂ y H₂ para reducción de las emisiones de CO₂

2021 DATOS CLAVE

~66,400 EMPLEADOS

PRESENCIA EN 75 PAÍSES *

MÁS DE 3.8
MILLONES
CLIENTES &
PACIENTES

VENTAS **€23.3bn**

BENEFÍCIO NETO (GRUPO AL) **€2.6bn**

DECISIONES DE INVERSIÓN €3.6bn

Nuestras plantas de producción de O₂ y H₂

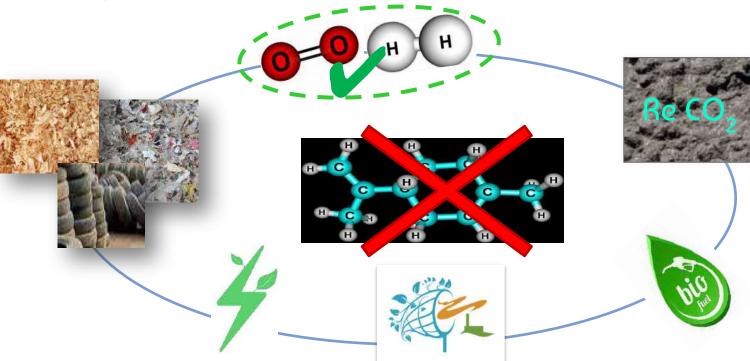
Air Liquide Sérgio Fernandes

01-06-2022 ALTEC SWF combustion

Oficemen – Tecnologías AL en la industria de los cementos

El desafío en la industria de los cementos

Objetivo de reducción de las emisiones de CO₂ en relación a 1990


THIS DOCUMENT IS . CONFIDENTIAL

AIR LIQUIDE, A WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

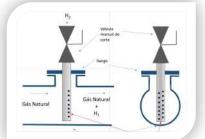
¿Cómo reducir las emisiones de CO₂ ?

✓ Hay varias soluciones posibles

THIS DOCUMENT IS . CONFIDENTIAL

AIR LIQUIDE, A WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALT

Tecnologías Air Liquide disponibles


El Grupo Air Liquide dispone de tecnologías basadas en la utilización de O₂ y H₂ para reducir las emisiones de CO2 en la producción de clinker

THIS DOCUMENT IS • CONFIDENTIAL

AIR LIQUIDE, A WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

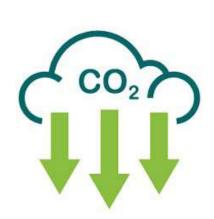
¿Qué aportan el O₂ y H₂ a la producción de clinker?

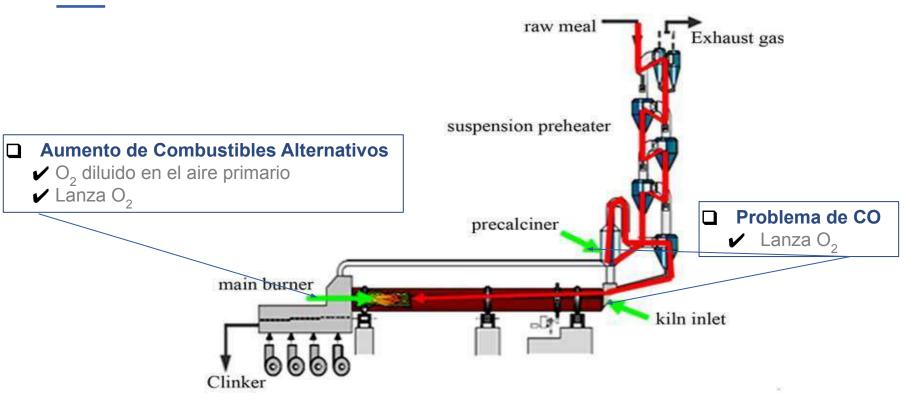
Usamos el O₂ mezclado con aire o puro por lanza para:

- Aumentar el consumo de combustibles alternativos, sin impactar <u>en la calidad y producción de clinker</u>
- Aumentar de la producción de clinker

Usamos el H₂ mezclado con el combustible o puro por lanza para:

- Reducir las emisiones de CO, (economía de combustibles fósiles)
- Aumentar la fracción de combustibles alternativos en el quemador
- Mayor estabilidad del proceso y aumenta la velocidad de 3. combustión de todos los combustibles


Ventajas de la tecnología Air Liquide



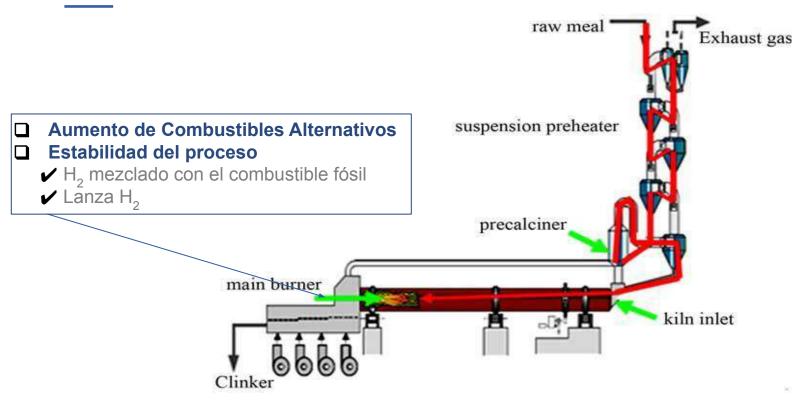
La adopción de la tecnología AL en el horno rotativo de clinker aporta los siguientes beneficios:

- \square Reducción de las emisiones de CO_2 (economía de combustibles de origen fósil)
- Aumento de la tasa de incorporación de combustibles alternativos (CA)
- Utilizar combustibles alternativos de menor PCI
- Mayor velocidad de la combustión
- Combustión más estable (llama más compacta y corta)
- Aumento de la temperatura de llama para compensar la mayor tasa de combustibles alternativos
- ☐ Mantiene bajo control el CO y O₂ a la entrada de horno

¿Dónde aplicar el O₂?

THIS DOCUMENT IS . CONFIDENTIAL

AIR LIQUIDE, A WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH


Air Liquide

01-06-2022 ALTEC SWE combustion

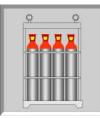
Oficemen – Tecnologías AL en la industria de los cementos

INDUSTRIAL MERCHANT

¿Dónde aplicar el H₂?

Condiciones para implementación del O₂ y H₂ en horno

- □ La realización de pruebas con O2 y/o H₂ en la fabricación de clinker requiere algunas condiciones para obtener resultados fiables:
 - > Horno estable durante las pruebas
 - > Periodo de ensayos entre 3 y 6 meses.
 - ➤ Tiempo mínimo de 1 semana con enriquecimiento de O₂ para obtener datos suficientemente claros (con H₂ se puede reducir)
 - ➤ Análisis continuo del %CO y %O₂ en el horno (y en opción en el PC).
 - Cambiar un parámetro de cada vez y de forma progresiva,
 esperando tiempo suficiente para evaluar resultados antes de volver a cambiar.



Propiedades del Oxígeno - O₂

OXÍGENO (O2)

Características

- Sin color (azul claro en estado líquido), sin olor, sin sabor
- Densidad en relación al aire: 1.1
- Proporción en el aire : 21% en volumen
- Efecto de la sobreoxigenación en la combustión:
 - inflamación más rápida de los combustibles
 - llama mucho más caliente y propagándose rápidamente

O₂ Bajo control

No engrasar

Tuberías sin polvo

Baja velocidad en tubería

Manipular lenta de las válvulas

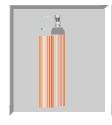
THIS DOCUMENT IS . CONFIDENTIAL Air Liquide

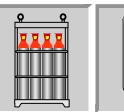
Propiedades del Hidrógeno – H₂

HIDROGÉNIO (H₂)

Características

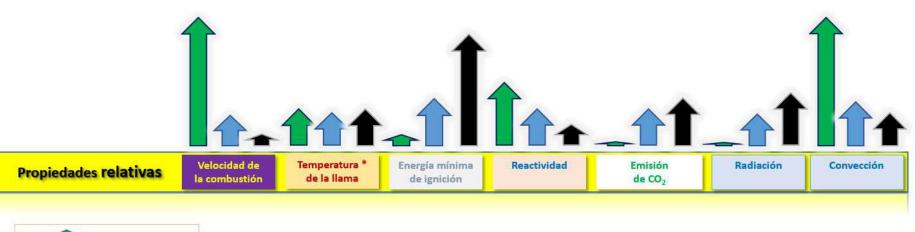
- ✓ Sin color, sin olor y sin sabor
- ✓ Densidad en relación al aire: 0,07
- Características de la molécula: la más pequeña, la más rápida, la menos viscosa
- ✓ Las fugas acontecen muy fácilmente
- ✓ El gas liberado se concentra en los puntos elevados (<u>atención</u>: concentración aleatoria).
 - Características de la llama: no poluente (producto: vapor de agua), invisible a la luz del día
 - Compatibilidad con los materiales a la temperatura ambiente:
 - ⇒⇒⇒ fragiliza el hierro, algunos aceros, el hierro fundido y el titanio





AIR LIQUIDE

(LIE)

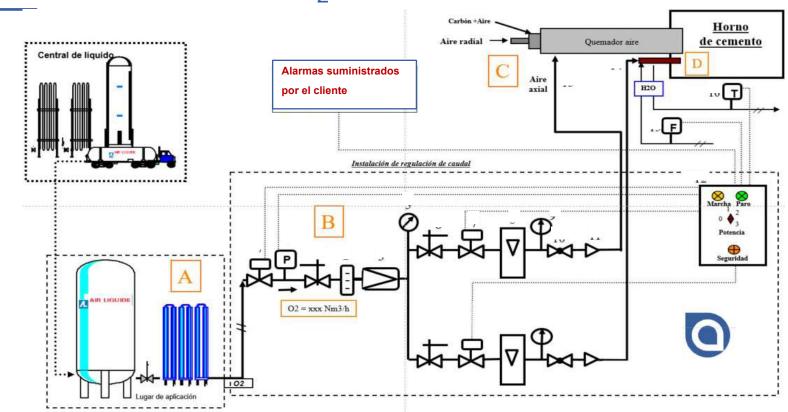

H2 no ar

La energía de inflamación es 10 veces menor do que la de cualquier hidrocarburo

THIS DOCUMENT IS . CONFIDENTIAL

Propiedades de algunos combustibles

☐ Tabla comparativa de propiedades de algunos combustibles



THIS DOCUMENT IS . CONFIDENTIAL

AIR LIQUIDE, A WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

01-06-2022

Instalación típica de O₂ para horno rotativo de clinker

THIS DOCUMENT IS . CONFIDENTIAL

AIR LIQUIDE, A WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

01-06-2022

Tecnologías de inyección O₂

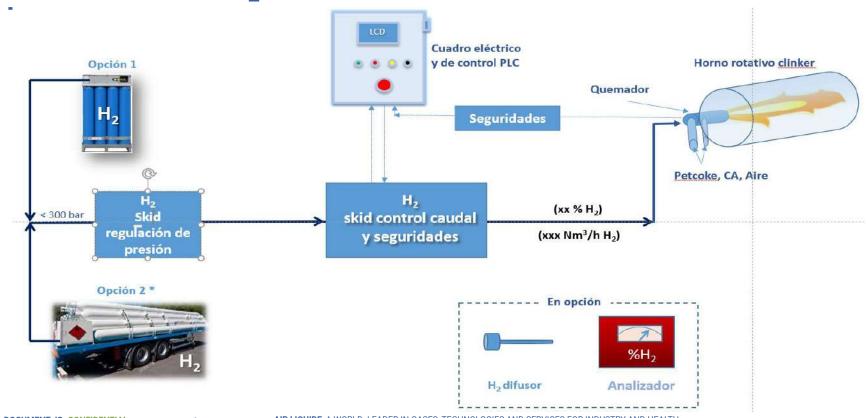
☐ Mezclador de gas

Para diluir el aire primario

- Inyección de oxígeno
- Inyección de oxígeno y AF (separadas o juntas, tecnologia patentada OLAF)

THIS DOCUMENT IS . CONFIDENTIAL

AIR LIQUIDE, A WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALT


Ventajas de utilizar O₂ en el quemador

- La utilización de O₂ puro en lanza o diluido en el aire primario:
 - → Aumenta la tasa de combustibles alternativos (CA)
 - → Reduce las emisiones de CO₂
 - → Permite usar CA de menor PCI
 - → Anticipa la combustión de CA
 - →Aumenta la temperatura de llama
 - →Supera las limitaciones del ventilador de tiro
 - → Mejora el control de CO y O₂ a la entrada de horno

Instalación de H₂ para horno rotativo de clinker

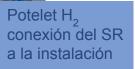
THIS DOCUMENT IS . CONFIDENTIAL Air Liquide

01-06-2022

Oficemen - Tecnologías AL en la industria de los cementos

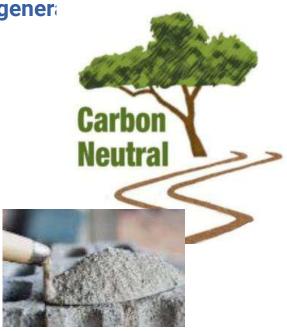
INDUSTRIAL MERCHANT

Materiales de la instalación H₂



Caudalímetro gas natural e inyector H₂

skid seguridad y control caudal H₂


THIS DOCUMENT IS . CONFIDENTIAL

AIR LIQUIDE, A WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

Beneficios de mezclar H₂ con cualquier combustible

■ La utilización de H₂ mezclado con otros combustibles genera combustión más eficiente y garantiza:

- → Aumento de la tasa de combustibles alternativos
- →Utilización de CA de bajo PCI
- → Reducción de las emisiones de CO₂
- →Inflamabilidad extendida
- → Mayor reactividad de la llama
- → Aumento de la velocidad de quema

Realización de ensayos con O_2 / H_2 – oferta AL!

- Gas
 - O2 o H2 gas para el proceso de combustión
- Materiales y equipos asociados
 - Lanza O₂, Lanza H₂ Mezclador Gases

 - Canalización

 - Quemador AF-O₂/H₂ Skid y cuadro de control
- **Equipos & Montaje**
 - Canalización y skid,...
- Servicios incluídos
 - Arranque y comisionamiento
 - Ensayos
 - Discusión de los resultados y propuesta de nuevos parámetros

INDUSTRIAL

MERCHANT

Resultados expectables en la producción de clinker

Usando O₂ mezclado con aire o puro por lanza (hasta 500 Nm³/h) en el queimador es posible:

- 1. <u>Aumentar en 15-40% el consumo de CA en el quemador de horno,</u> <u>manteniendo constante la calidad y la producción del clinker</u>
- Reducir las emisiones de CO₂

- 1. Reducir las emisiones de CO₂
- 2. Reducir el consumo de combustible fósil por encima de equivalente térmico (mayor eficiencia de la combustión).
- 3. Mayor estabilidad de la combustión

Ejemplos prácticos de utilización de O_2 y H_2 (1) Francia

Técnica:

Invección de O2 por lanza en el quemador

Contexto:

- Aumento del uso de combustibles alternativos Sustitución de carbón por CA
- Mantenimiento de la calidad del clinker

Resultados:

- Aumento del uso de combustibles alternativos en un 8%
- Caudal máximo de $O_2 = 180 \text{ Nm}^3/\text{h}$
- Sustitución de carbón por CA

Plan de Acción:

- Estudio técnico de la mejor solución
- Fase de ensayos
- Formación de los operadores del cliente en el manejo de los equipos
- Análisis de los resultados

Ejemplos prácticos de utilización de O₂ y H₂ (2) Iberia

□ Técnica:

Inyección de O2 por lanza en el quemador + en el aire primario

□ Contexto:

- Aumento del uso de combustibles alternativos
 Sustitución de combustibles sólidos: de carbón por CA (CDR)
- Mantenimiento de la calidad del clinker

Resultados:

- Aumento del uso de combustibles alternativos en 13-20%
- \Box Caudal máximo de $O_2 = 400 \text{ Nm}^3/\text{h}$
- Ahorro de combustibles fósil = reducción de las emisiones de CO₂

Plan de Acción:

- Estudio técnico de la mejor solución
- ☐ Fase de ensayos
- ☐ Formación de los operadores del cliente en el manejo de los equipos
- Análisis de los resultados

AIR LIQUIDE, A WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

01-06-2022

Ejemplos prácticos de utilización de O2 y H2 (3) Iberia

Técnica:

Inyección de H2 diluido en el GN en una caldera de producción de vapor

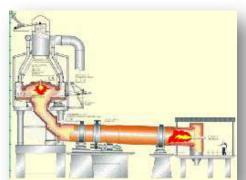
Contexto:

- Ahorro del gas natural
- Reducción de las emisiones de CO₂
- No impacto en la producción y calidad del vapor

Resultados:

- Reducción de las emisiones de CO₂ en -7,8% / ton vapor
- Incremento de la eficiencia de combustión en 3,8% (por encima del equivalente térmico)
- Caudal máximo de $H_2 = 110 \text{ Nm}^3/\text{h} (15\% H_2)$

Plan de Acción:


- Estudio técnico de la mejor solución
- Fase de ensayos
- Formación de los operadores del cliente en el manejo de los equipos
- Análisis de los resultados y negociaciones para uso industrial

THIS DOCUMENT IS . CONFIDENTIAL

Algunas aplicaciones industriales que pueden usar H₂



THIS DOCUMENT IS . CONFIDENTIAL

THIS DOCUMENT IS CONFIDENTIAL

AIR LIQUIDE, A WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

Air Liquide 01-06-2022 Sérgio Fernandes ALTEC SWE combustion

Oficemen – Tecnologías AL en la industria de los cementos

INDUSTRIAL MERCHANT